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Synopsis
The /-representation of the system function S(p) = [1 + (pr0)1_a]_^, i.e. the general Debye 

function, has been determined in the general case of 0 g a,ß 1 and 0 < r0 as an infinite 
(C, 1) summable series of Riesz distributions,

« = Y 1 ( '1)W r</3 + n)
1 ntOro n! ’ Hß) ' r[(l-x)(ß+n)] ‘

It is established that a transformation T characterising a physical system and mapping 
an excitation f into a response r by r = T[f] = B * f in spite of the singularities of the system 
function S(p) possesses the six properties of (i) single valuedness, (iz) linearity, (iii) stationary­
ness, (iv) continuity, (y) passivity, and (yi) causality.

The main results required from the theory of distributions are presented in the text.
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1. Introduction

In the present paper the transformation of an excitation f into a response 
r, T: f -> r, as effected by a physical system, is considered from a general, 
mathematical point of view. Only linear systems are treated.

Often, rather than describing the transformation directly, i. e. by giving 
the /-representation, an integral transformation (Laplace transformation) 
may be carried out, whereby the equivalent p-representation is obtained.

Whereas in the /-representation the information about the transformation 
is inherent in the mathematical properties of the transformation, in the 
p-represenlation this information is contained in the properties of the system 
function S(p), a complex valued function of a complex variable p.

As particular instances of a system function S(p) are discussed the

Debye function, ------- , and the general Debye function,--------------- —5-,i+?ro 6 ■ [i+(W1-aF
where p E C1, a,ß, to g R1, 0 â <x,ß â 1, and 0 < to. Inspection shows 
that whereas the Debye function in the complex p-plane as its sole singu­

larity has one simple pole, viz. p = — , the general Debye function may 
To

possess branch point singularities which may be greater than one in number 

and which may be dense on the circle |p| = . Furthermore, the general
to

Debye function may have a branch point at p = 0.
Rather than as functions the excitations /' and the responses r are treated 

as distributions, i.e. as elements of a topological, linear vector space Q>' 
(over C1) of continuous, linear mappings from a space of test functions 
into the field C1 of the complex numbers.

In section 2 the main results required from the theory of distributions1)

For a full treatment of the theory of distributions see ref.s (5), (14), (15), (16), and also 
ref.s (2), (6), and (13).

1*
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are indicated. In sections 3 and 4 the relationships between the properties 
of a transformation T and the properties of the corresponding system func­
tion S(p) are studied. Section 5 treats the properties of the general Debye 
function as system function and the properties of the transformation T cor­
responding to it. In section 6 the /-representation of the general Debye func­
tion as system function is determined.

The main results of the treatise are the theorems 5.1 and 6.1.

2. Distributions

Distributions2) are essentially defined as elements of topological vector 
spaces 0' which are dual to certain other topological vector spaces 0, the 
elements of which are termed test functions cp. The vector spaces 0 and 
0' are defined over the field C1 of the complex numbers. The test functions 
ep are defined pointwise on sets of points, e.g. R1, Cn, but only complex 
valued functions defined on R1 will be required.

In what follows some important function spaces and their duals will be 
treated.

Let the vector space (A) be the space of all continuous, complex valued 
functions, gn- R} -+ C1, of one real variable, which have their supports 
contained in the one compact set K, K <= R\ suppçj< = K. The vector 
space tø of all continuous functions ep with compact support is generated 
as the union of all the vector subspaces tø (A) as the compact set A varies 
over Rl. By defining the seminorms p((?k) = sup|ç?k(.x')I ’n the subspaces 

xE K
tø(A) a topology of compact convergence is introduced on the spaces ^(A). 
A topology on tø is now defined as a set of neighbourhoods in tø such that 
for each A the intersection of each neighbourhood and the space (A) is 
a neighbourhood in tø(A) under the above topology of compact convergence. 
As A varies over Rx this topology becomes the inductive limit topology of 
compact convergence, and the space fé’ with this topology is the inductive 
limit of the spaces fé’(A).

Definition 2.1 tø = tøx is the topological vector space over C1 of all con­
tinuous, complex valued functions, ep: Rl -> C1, of one real variable, x e R], 
which have compact support. The topology on tø is the inductive limit topology 
of compact convergence.

2) For a full treatment of the theory of distributions see ref.s (5), (14), (15), (16), and also 
ref.s (2), (6), and (13).
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Theorem 2.1 A sequence {cpv} of functions in tø, epv e tø, v = 1,2,3, ,
converges to a limit ep in tø, ep G tø, if and only if (i) there exists a space (A) 
such that ep,epv G ^(A), v = 1,2,3, ... , and (z’i) the sequence {epv} converges 
to ep in the topology on tø(A).

Likewise, let the vector space ^(A) be the space of all infinitely dif­
ferentiable, complex valued fonctions, epK\ Rl -+ C1, of one real variable, 
.r g R], which have their supports contained in the compact set A, A Rl, 
supp9?x A. The vector space 0 of all infinitely differentiable functions ep 
with compact support is generated as the union of all the vector subspaces 
^(A) as the compact set A varies over Æ1. By proceeding in a manner 
quite analogous to the above a topology of compact convergence is defined 
on the vector subspaces £^(A) by defining the seminorms Pj{epKf = sup 

zGK 
|9?k(x)|, J = 0,1,2,3, ... , in the spaces S(A). Again it is possible to define 
in Q) a set of neighbourhoods such that for each A the intersection of each 
neighbourhood in with the space £^(A) is a neighbourhood in ^(A) 
under the above topology of compact convergence, and the space Q) is thus 
generated as the inductive limit of the spaces ^(A).

Definition 2.2 Q) = Q)x is the topological vector space over Cl of all in­
finitely differentiable, complex valued functions, ep : R} C1, of one real var­
iable, x G Rl, which have compact support. The topology on Q) is the inductive 
limit topology of compact convergence.

Theorem 2.2 A sequence {epv} of functions in Q), epv g Q>, v = 1,2,3, .. ., 
converges to a limit (p in Q, ep jG Q), if and only if (z) there exists a space 
&(K) such that ep,epv G ^(A), v = 1,2,3, ... , and (ii) the sequence {<pv} con­
verges to ep in the topology on &(K).

Finally is introduced the space y of test functions of rapid decrease.

Definition 2.3 Tf = Tfx is the topological vector space over C] of all in­
finitely differentiable, complex valued functions, (p:Rl C1, of one real vari­
able, xeR1, with the property that |x|*  ■ (x) | â Cm, k,l = 0,1,2,...,
with Cki a positive, real constant. The topology on Tf is introduced by defi­
ning the seminorms pmn(<p) = sup\xm epW> (x)\, m,n = 0,1,2,3,. . .

xE R'

If 0 is a topological vector space over the field C1 of the complex num­
bers, the set of all continuous, linear mappings ep' of ø into C1, ep' : 0 -> C1, 
constitutes a vector space called the dual of 0 and denoted by 0'. The 
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value of the mapping <p' e 0' at the point ç? e ø is denoted by 9/(9?) = 
<ç/,<p> £ C.

To introduce a topology on 0' let a topology be defined on 0, and let ja/ 
be a family of bounded subsets of with the properties

(z) if A E stf and Be,?/ then there exists a C E such that 
AU B S C,

(z’z‘) if A e jaZ and A is a complex number then there exists a B e sA 
such that AA S B.

A topology on 0' now is determined by delining a set of seminorms in 
0' by /»'(çj') = sup |(ç/, ç?)|, A e jaZ. In particular, two topologies on 0' are 

<p E A
of importance. If jjZ is the set of all finite subsets of 0, the topology 
defined on 0' is called the weak dual topology <r(0', 0). If jaZ is the set 
j/b of all bounded subsets of 0, the topology defined on 0' is called the 
strong dual topology /?(ø', 0). As jaZy E jaZ& it follows that o S ß, i.e. that 
the strong topology is essentially finer than the weak topology.

Definition 2.4 The dual space tø' of the space tø is the topological vector 
space of all continuous, linear, complex valued functionals, p' •. tø -> Cl, de­
fined on tø. This is the space of Radon measures on tø. The topologies on tø' 
are the weak dual topology a and the strong dual topology ß.

An important element in the space tø' is the Dirac measure, the delta 
functional.

Definition 2.5 The continuous, linear mapping ô : tp -> 9?(.ro) of tø into 
C1 is the delta functional at the point xo g R1.

The weak topology a on the dual space 0' is the topology of pointwise 
convergence in 0. A sequence of functionals {<pv}, v = 1,2,3, .. ., converges in 
the (T-topology to the limit <p' if and only if the sequence of complex numbers 
{(spv’T)} converges to the complex number for every (p e <P.

The strong topology ß on the dual space 0' is the topology of uniform 
convergence on every bounded subset of the space 0. A sequence of func­
tionals {99',}, v = 1,2,3, ... , converges in the /Ttopology to the limit (p' if 
and only if the sequence of complex numbers {(<?'„, (ff} converges to the 
complex number <pp',(p') uniformly on every bounded subset of 0.

If a sequence of functionals converges in the strong /5-topology then it 
also converges in the weak u-topology.
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Definition 2.6 The dual space 3' of the space 3 is the topological vector 
space of all continuous, linear, complex valued functionals, cp' : 3 -> C1, de­
fined on 3. This is the space of distributions on 3. The topologies on 3' are 
the weak dual topologg a of pointwise convergence in 3 and the strong dual 
topology ß of uniform convergence on every bounded subset of 3.

Definition 2.7 The dual space 3' of the space 3 is the topological vector 
space of all continuous, linear, complex valued functionals, cp' : 3 -> C1, defined 
on 3. This is the space of tempered distributions on 3. The topologies on 3' 
are the weak dual topology a of pointwise convergence in 3 and the strong 
dual topology ß of uniform convergence on every bounded subset of 3.

If Q is an open subset of 7?1 and dx is the Lebesgue measure then 
3? (ET) with p e R], 1 g p < co, denotes the set of all measurable, com­
plex valued functions on J?1, RT -> C1, where fQ\f(x)\^dx < ». In par­
ticular 31(Q) is the space of all functions which are locally integrable in Q.

From this the topological vector space is defined as the quotient 
space LP(^) = 3?(£?)/{f G 3?(£) | fQ\f(x~)\Pdx = 0} of equivalence 
classes of functions which are equivalent modulo the relation “/ = g ex­
cept on a set of measure zero”. The topology on L? is determined by de­
fining the norm = (f^|/’(x)|2’c?a:)1/î’.

The set of all continuous, linear mappings <p' of Lv(£E) into C1, 
cp': 13(£T) -> CF(p G RA, 1 â p < <»), constitutes the topological vector­
space (Lv(Q)f (1 < p < oo) dual to L'P(Q'). The topologies on (7>)' are 
the weak dual topology a of pointwise convergence in L? and the strong 
dual topology ß of uniform convergence on every bounded subset of the 
space L'p(Q').

If E and F are two topological vector spaces, a natural injection of E 
into F with a dense image is a continuous, linear mapping, / : E -+ F, such 
that j(E~) is dense in F. In diagram 2.1 

(diagram 2.1)

the arrows indicate possible natural injections with dense images.
From all the images being dense it follows by application of the Hahn- 

Banach theorem that all the transpose mappings, j' : F' -+ E', in diagram 
2.2 are injective,
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Furthermore, if the two dual spaces E' and F' both carry the weak dual 
topology o', or both carry the strong dual topology ß, then the transpose map­
ping, / : F' E', is continuous. This result may be applied to diagram 2.2. 
Accordingly, all of the spaces in the diagram may be considered as sub­
spaces of the space of distributions £^'(ß), i. e. all are spaces of distributions. 
The spaces are all dense in ^'(ß).

Again, let Q be an open subset of Rx and let p e R1, 1 g p < oo. Define 
p ,

p' = — for p > 1, and p = oo for p = 1. Let the space Lp' carry the 
p - 1

norm topology defined above, and let the space (/A(ß))' carry the weak 
dual topology cr or the strong dual topology ß. If a bilinear form on /A(ß) x 
Lp'(£F) is defined by

(At?) (2.1)

where the bar denotes complex conjugation, then it is an important result 
from the theory of duality between topological vector spaces that an iso­
morphism exists between the spaces Lp> (LÏ) and (L2’(ß))', i. e. then a linear 
mapping exists, i: Lp,(&) -> (LP(Lb))', which is bicontinuous and bijective. 
From this it follows that the spaces S’(Q), (LT), and Lp(Q) (1 <
p < œ) may all be considered as subspaces of the space of distributions 
ß^'(ß), i. e. their elements may be considered as distributions. The spaces 
of diagram 2.1 are all dense in the space ^'(ß).

Furthermore, the restriction of the continuous, linear form, E1(ß) -> C1, 
defined by

f £ £X(Æ), (2.2)

to the space ^(ß) defines f as a distribution in ^'(ß). As finally ^(ß) is 
dense in /A(ß) it follows that if /i and fz are different as elements of Ex(ß) 
then they will also be different when considered as elements of ^'(ß), i. e. 
as distributions.

Theorem 2.3 Fel Q be an open, non-void subset of R], ß Sï J?1. Let 
1 *

p,p G E1 such that —I—- = 1 and 1 g p,p g oo. Let / G IZ(ß) and 
P P

qp G ZA(ß). Define a mapping by

(diagram 2.2)(p g Rl, 1 g p < co)
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/■ -> (92 </» = J'ß/’(x)99(x)c?x).

Then, (z) for 1 p < 00 and 1 < p' â 00 the mapping is a bijective 
isometry of Lp'(3) onto (Lp(3))',

and (ii) for p = 00 and p’ = 1 the mapping is an injective isometry of 
I>(3) into (L°°(!2))'.

If a function f in /?(£?) exists, f e L1(ï2), such that the continuous, 
linear form (2.2) defines a distribution Tf in .Sf (£?), Tf E 3'(3), which by 
theorem 2.3 may be identified with the function, f = Tf, then the distribu­
tion Tf is called regular. If a distribution T, T E 3'(£?), is not regular, it 
is called singular.

The space ^'(P) possesses a linear vector space structure, such that 
addition of two distributions /1 and fz in 3'(3) is defined by

</i + /a, (p> = </i, 9?> + </2, <pj, (p E 3(3), (2.3)

and multiplication of a distribution f in 3'(3) by a complex number ). is 
defined by

<fk<p> = l(f,(pj, (p e 3(3), (2.4)

where the bar denotes complex conjugation.
Multiplication as a bilinear, associative operation on two distributions 

/i and fz from a distribution space and coinciding with the multiplication 
of two elements of Lx(3) (i.e. two locally integrable functions) in the case 
of fi and f-2 being regular distributions cannot be defined for arbitrary /j 
and /a.3)

However, the multiplication defined by

<p -+ oap, a E (ioV>(3), (2.5)

where 3 is an open subset of Ä1, is a continuous, linear mapping of 3(3) 
into itself, 3(3) -> 3(3). Hence the transpose mapping is a continuous, 
linear mapping of 3'(3) into itself, 3'(3) -> 3'(3), and this transpose 
mapping is adopted as the definition of multiplication of a distribution in 
3'(3) by the function a, a E ^(3).

Definition 2.6 If 3 is an open subset of RL, oc is a function in <^œ(3), 
oc E (^>x(3), and T is a distribution in 3'(3), then multiplication of the dis­
tribution T with the multiplier <x gives the distribution txT defined by (<x.T,cpy = 
(T, xcpy.

3) This is a result due to Schwartz. See ref. (14).
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The sets of multipliers in the test function spaces possess linear vector 
space structures.

Theorem 2.4 Multipliers in the space ^(12) are all infinitely differentiable 
functions of arbitrary support. Multipliers in the space &(£2) are all infinitely 
differentiable functions s of slow increase, i.e. for which |s<*)(.r)|  = O(|.r|z), 
where k and I are integers, k,l è 0.

The operation of differentiation of distributions may be defined in an 
analogous wav.

Let f be a function, f : R1 -> Cl, which is differentiable n times, n = 
0,1,2,3,..., with continuous derivatives in the open subset £2 of J?1, 
/’ e (l£n(£2). Hence f is also locally integrable, f e Ll(£2), and, as has been 
expounded above, if ep is a test function in ^(£?) then the continuous, 
linear mapping

æ e Rf (2.6)

defines in ^'(12) a distribution which may be identified with the function /'.
Suppose a homeomorphic mapping of Q)\£2f into 3)'(£2) is defined by 

the formula
Dn\f->D^f, 71 = 0,1,2,3,..., (2.7)

denoting the n'th order derivative of f in the function sense. Then, as 
= (- l)n f ^f {xfep^ (pxfdx, it is seen that £Dnf,<p) = 

(— \fn£f,Dntp'). This leads to the following definition.

Definition 2.8 If £2 is an open subset of R1, n is an integer, n = 0,1,2,3, 
..., and T is a distribution in 3'(£2f, then the distribution I)nT is defined 
by (DnT,<py = (— lfnfT,Dnepy.

Notice that Dn is the transpose of (— l)ra7)ra.
Subsequently the concept of the support of a distribution T, supp 7’, 

will be of importance.
Again, £2 is an open subset of 2?1.

Definition 2.9 A distribution T in the space 3'(£2) is said to vanish in 
an open subset U of £2 if (,T,ep) = 0 for all test functions ep E 3 (£2) with 
suppç? Ç

Definition 2.10 The support of a distribution T in 3'(£2) is denoted by 
supp T and defined as the complement of the largest open subset of £2 in which 
T vanishes.
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The subspace of &'(&) which consists of all distributions with support 
on the non-negative real axis 7?1. = {o'e Ä1 |() ^ ff < »} is denoted by 

<= ^z(ß).
If Â is a complex number, Ä e C1, such that Rez > — 1, if x is real, 

x e Ä1, and if rp is a test function in ^(f2), cp e ^(£), then the product 
function x*<p  is locally integrable, x^cp E L1, and the continuous, linear
mapping

(p -+ <æ+,9?> = J,Ô x*  (p(x) dx (2-8)

defines the regular distribution x± E @+.
For ReÂ - 1 the limit lim x*(p(x)dx  does not exist, i.e. ar(p $ L1, and 

£ —> 0 + -
therefore the integral may not be used to define a distribution xq_. If, 
however, a sufficient number of terms are subtracted from the MacLaurin 
expansion of the test function the integral is rendered convergent. Thus, if 
-n < ReÂ < -(n-1), where n is a positive integer, n = 1,2,3,. . then
the integral

n — 2
00

dx
/l = 0

(2-9)

converges and is used to define the singular distribution Pf x± E c ^'(ß). 
Distributions of this type are termed pseudofunctions and are characterised 
by the prefix Pf. This procedure of extracting a finite part from a divergent 
integral by subtracting the terms which cause the integral to diverge was 
first introduced by Hadamard4), and the result is called the finite part, 
Fin. P., of the integral.

For -n < Rez < - (n - 1), where n is a positive integer, n = 1,2,3,.. ., 
the singular distribution Pf x± is defined by

00

da:

/« = o

= lim
e-> 0 +

where <p E &(£}).
For - 1 < ReÂ the continuous, linear mapping

<Pfx?f, <p) = Fin. P. x^ (p(x) dx

' (0)

f*  00 

I x^ qf x) dx

(2.10)

4) See ref. (7).
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(p (Pf x^y) = Fin. P.fâ x^<p(x)dx (2-11)

may still be used for defining the pseudofunction Pf x±, but no subtraction 
in the MacLaurin series is required, so that the distribution defined becomes 
regular and the notions of Fin. P. and Pf superfluous,

<x*,(p>  = fox^(p(x)dx. (2.12)

For Re2 = ~n and 2 4= n, where n is a positive integer, n = 1,2,3,. . 
the singular distribution Pf x*  is defined by analytic continuation in the 
complex 2-plane from - n < Re2 < -(n-1). As for Re2 = - n the integral 
$™x xn-1<p(x)dx diverges as £ -> 0+, one more term must be included 
in the series to be subtracted in the integrand in order to obtain the finite 
part of the integral, Fin. P. xAcp(x') dx.

Thus, for Re 2 = —n and 2 4= — n, where n is a positive integer, n = 
1,2,3,. . ., the singular distribution Pf x± is defined by

(Pf xj., cp> = Fin. P. x^ cp (x) dx

/z=0

n — 2
x^ç?(/z)(0) æn-i^n-i^p)

(n-1)!
dx?(*)

g/Z + Â + i^^Q)

/z! (/z + 2 + 1)

£W + 2Ç)(W“l)(0)

(n~l)!(n + 2)

(2.13)

where cp e ^(Q').
For 2 = - 1,-2,-3,... the above definitions of Pf x^ do not apply, 

essentially because in these cases the defining integrals diverge. Considered 
as functions of 2 e C1 the integrals have poles at 2 = -1,-2,-3,. . . . As 
<p is in £^(ß), (p E &(&), an integration by parts shows that whereas the 
integral

r°° 1
— <p(x)dx =

E X
— lneç?(0) - J“ lnx(p (x)dx - o(l) (2-14)

diverges as £ -> 0 + because of the term -ln£<p(0), the integral

r°°1 r
dx + ln£ç?(0) = — [ç?(x) - ç>(0)uo(l - x)]dx

J E X

— J” In x (p'(x) dx — o( 1 ),

x > 0

x < 0

(2.15)

converges as £ -> 0+.
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This leads to defining the singular distribution Pf —I corresponding 
to the case z = - 1 by \/ +

(2.16)

It is of importance to consider such effects on a distribution which stem 
from a change of independent variable in a test function.

Let f be a function, f : R1 -> C1, which is locally integrable in an open 
subset £? of R', /' e 7A(£?). As has been expounded above, if is a test func­
tion in ^(72) then the continuous, linear mapping

(2.17)

defines in ^'(72) a distribution which may be identified with the function /’. 
Suppose a homeomorphic mapping of 7^'(72) into &'(Q) is defined by 

the formula
Ta : /(x) -> Taf(x) = /’(.? - «)> a’x G (2.18)

Then, as Jq/’(x - o) ç?(.r) d.r = f Qf(x)ep(x + a)dx, it is seen that (ra/-, =
</,This leads to the following definition.

Definition 2.11 If Q is an open subset of Rl, a is a real number, a G I?1, 
and T is a distribution in ^'(11), then the distribution xaT is defined by 
<xaT,(f>} = (T,T_a(p>.

Notice that ra is the transpose of r_a.
Likewise, let a homeomorphic mapping of 7^'(72) into be defined 

by the formula
(2.19)%a :f(x) -> %af(x) = f(ax), a,x g R\

Then, as \'of(ax)cp(x)dx = — f(x)(p\ — ] dx, it is seen that </«/', <p> =
t |a|Jß \al

This motivates the following definition.
|a|

Definition 2.12 If Q is an open subset of R], a is a real number, a g R}, 
and T is a distribution in &(&), then the distribution %aT is defined by

1
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Z1 \a,X E R1, in the distribution Pf\~)
/+

dx

(2.20)

i. e. that

OO

dx
n!

00

00

dr
(n-1)!

/< = 0

In the light of this property it is now possible to define5) the distribution 
Pf x± also in the case when Â is a negative integer.

= lim
E -> 0 +

fi = o

Definition 2.13 Let n be a positive integer, n = 1,2,3,. . . ,6) let Z be a com­
plex number, A e C1, and let (p be a test function in 3>, <p E

For — n < Re À < -(n-1) the distribution Pf x± g is defined by

<,Pfx*,(p>

= Fin. P. J” xL <p (x) dx

For Re/. = —n, 7. + -n, the distribution Pf x± e &+ is defined by 

<Pf x* , <p>

= Fin. P. JQ x^ (p (.r) dx

1 
Notice that ya is the transpose of —%»-i.

I«l
A linear change of scale, x -+ ax, c 

defined in (2.16) shows

poo___

I x^ cp (x) dx

.^^00(0)- Jo ** - L

\ ' xtl (p^ (o) Xn ~ 1 99(n-1)(O)

th at

<f>(x) - (p(O)iio\ 1 d]
J 0 X a/

s) The last part of the definition is due to Güttinger. See ref. (6).
6) For n = 1 see eq.s (2.11) and (2.12) and accompanying text.
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For /. = - il the distribution Pf x± G @'+ is defined by

<Pf x* , (py

= Fin. P. x~n(p (æ) dx

= lim
E -> 0 +

/ x ”V2 ^>(0)

2.——
// = 0

æn-lç>(n-!)(())
dx

,»OO

X

n -2

J x~ncp(x)dx + 2

// = 0

£fl-n +

/z ! (^tz — n + 1 )
/n(E/a)<p(w_1>(0)

(n-1)!

where a G R1.
Considered as a function of the complex variable z, 2 e C1, the integral 

F(2) = <^Pfx\,(py is a complex valued function which is holomorphic 
everywhere in the finite 2-plane except at the isolated points 2 = -1,-2, 
- 3,. . . which constitute a set of simple poles. The function F thus is mer- 
omorphic.

The residue at 2 = — n, where n is a positive integer, n = 1,2,3,..., 
is found to be

00

dx
/Lt I

00

x^ + 1

0
00

Jo

00
æÂ + n — 1

+ (- l)«-2
0

oo

00

I
+ (-!)» J

Res F(Z)
2 = — n

+ (- I)«“1

/z!

/z!

lim
2 - 71 +

dxo (2 + 1)(2 + 2)- • -(2 + n) V 7

[I = o

/t = 0

x a/*  + (0) \
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- 1

1
(n~l)!

- i) (0)

, (2.22)

The F-function as a function of the complex variable 2+1, 2 + 1 G C1, 
is meromorphic with isolated, simple poles on the negative, real axis just 
like the function F:2 -> fPfx^_,ep) studied above. For the F-function the 
poles of r(Å +1) are situated at 2 = - n, where n is a positive integer, 
n = 1,2,3,. . ., and the residues are

(_ l)n-l
Res F(2+l) = 7—7- (2.23)

A = -n (n - 1 )!

For every 2 g C1, F(2 + 1) + 0.
The Riesz distributions,7) first introduced by M. Riesz, are defined from 

the distributions Pfxf.

the points where F(2) and F(2 + 1) both have poles may be

= lim
F(2+ 1)

as the quotient of the residues. Therefore
-------------- . æi

<7V-F> = lim <?>
2->-n 7(2+1)

F(2)

Definition 2.14 Let x G J?1, 2 G C1, and let F denote the F-function. The
U

Fiesz distribution IF G Oh is defined as the distribution IF = Pf—
+ ' + 7X2+1)

Recause of the properties of the functions F(2) = {Pf x^,cpf and F(2 + 1), 

æ+ F(2)
the integral of the Riesz distribution {Pf-------  , =------------considered0 1 F(2 +1) 1 (2 + 1)

, . . . . „ . F(2) .
as a function of 2 G C1 is holomorphic in the finite 2-plane, i. e. --- is

F(2 + 1 )
an entire function of 2 e C1. In particular, the value of the function 

F(2)
------------at
F(2+l)
determined

7) See ref.s (5), (6), (12), and (14).

; (2.24)
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Res F(A)
Å = - n

Res F(2 + 1) 
Â = — n

= Ç9<ra 1\0)

= <( -

Hence the following result.

1 (2.24)

Theorem 2.5 For Z = — n, where. I E Cl, and n is a positive integer, 
n = 1,2,3,. . ., the Riesz distribution R± is

R,n = lim Pf - + = (- x E Rh
Å — n r(Å I 1 )

In the particular case of Â = — 1 the Riesz distribution is the delta distribu­
tion, Rf1 = ô.

3. Properties of the Transformation T

In the following a physical system will be characterised by describing 
the way it responds to some physical stimulus, i.e. by describing it as a 
transformation T of an excitation f from the domain of T, f e D(T), to a 
response r in the range of T, r E R(T). As to the physical nature of f and r 
no description in more precise terms will be required. The test functions 
will be defined on R1, cp : Rl -> C1, and though no physical interpretation 
of the independent variable will be needed the notation and terminology 
will agree with the case of the variable being real time. It will be assumed 
subsequently that T is single valued, and therefore the transformation may 
be written as the mapping T : f r. In general both 7)(T) and R(T) will 
be considered as subsets of the space ^'(72), where 72 is an open subset of 
R}, i.e. both f and r will be assumed to be distributions.

The transformation 7’will be proposed to have the following six properties.
3. (z) Single valuedness. To each excitation, f E I)(T), the transformation 

associates exactly one response, r E R(T),

(3-1)
2Mat.Fys.Medd. Dan.Vld.Selsk. 38, no. 2.

T(O = r.
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3. (zz) Linearity. If a and ß are complex numbers, a, ß G C1, and /i and 
/-2 are two excitations, /i./a g I)(T), then

r(«A + /J» - «7’(/i) + |ST(/2). <3.2)

3. (zzz) Stationaryness. If /'is an excitation, /' g D(T), and ra is the opera­
tor defined by definition 2.11 then the property of stationaryness of 7’ may 
be stated as 7’(ra(/')) = ra(T(/')), i.e. as the commutative property

Toxa = ta°T, a g Rl. (3-3)

3. (zc) Continuity. The topologies on D(T) and on 7?( 7’) are the topologies 
induced by the topology on ^'(72). The transformation T is continuous if 
and only if to each neighbourhood V of T(0) in 7?(7’) there corresponds a 
neighbourhood U of 0 in 72(7’) such that T(U) V.

There is an important connection between the class of transformations 
which possess the four properties 3. (z')-3. (z’p) above and the class of trans­
formations which may be represented by a convolution in ^'(ß).

If t G R1, t G R1, and (t, t) g R2, let Q>t, Q)x, and be the test func­
tion spaces 2 of all infinitely differentiable functions with compact support 
defined on Rl, Rl, and R2, respectively. Denote the corresponding dual 
spaces by S>'T, and ^'tT, respectively, and let the distributions in the 
dual spaces be marked by the corresponding indices, e.g. Ut, UT, and UtT, 
respectively.

Suppose cp : Rl x R1 -+C1 is a test function in the space T defined on 
R2. Then, evidently, the restriction of cp to y : Rv -> C1 is a test function 
defined on RA, e.g. y e

The tensor product of two distributions is a distribution defined as 
follows.

Definition 3.1 If t e Rl and t G J?1, Ut and VT are two distributions in , 
Ut G &'t, and VT G &T, and <p is a test function in 0t T, then the tensor pro­
duct Ut ® VT of the two distributions Ut and VT is a distribution in S>tx, 
Ut ® Vx g T, defined by

fUt®Vr,<p(t,T^ = <^,<VT^(t,T)».

The following two properties of the tensor product are of importance.

Theorem 3.1 The commutative rule holds for the tensor product Ut ® VT g 
°f G and G z e-
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= <Ut, <VT, 99(/,r)»,

<VT® Ut, (p(t, r)> = <VT, <t;, <?(/,?)»,

19

(ind
<ßt ® VT, 9?(/,r)> = <VT ® Ut, (p(t,r)>.

Theorem 3.1 is Fubini’s theorem in distribution theory.

Theorem 3.2 The support of the tensor product of two distributions Ut and 
VT equals the product of the individual supports of the factors, i.e.

supp(Ut® VT) = (supply) x (suppVT).

Suppose that t g IV and r e IV, and that (p e Q), cp : R1 -> Cl, is a test 
function defined on Z?1. From the fact that, for (p defined on R1, (p is a test 
function in @t, <pE @t, i-e. cp is infinitely differentiable and has compact 
support on R1, it cannot be implied that <p extended to R2, cp •. R2 -> C1, by 
ç?(f,T) = (p(t + t) is a test function in T, because even though 92(^7) = 
cp(t + t) is infinitely differentiable, it does not have compact support on R2. 
However, if I is a compact subset of R2, I <= R2, and the function a e <^’°° , 
a : Z?2 -» Ri, is the characteristic function of I, i.e. equals one on a neigh­
bourhood of I and equals zero elsewhere, then the product function 
oap : R2 -> C1 is a test function, oap G Q), defined on R2.

It is now possible to define the convolution of two distributions in the 
following cases.

Definition 3.2 Let t e Z?1 and r e R1, let Ut G Q)'t and Vr g Øf be two 
distributions, and let cp G 0,<p> : Z?1 -> C1, be a test function defined on R}. 
Let I be the intersection I = (supp Uf) 0 (suppVT) A (supp<p(t + r)) <= R2, and 
let a. G a:R2 -> R1, be the characteristic function of the set I.

If I is compact then the convolution product Ut * VT of the distributions Ut 
and VT is a distribution in 0't+T and is defined by

<Ut * VT, <p(t,r)> = <h; ® VT, cc(t,T)(p(t + r)>.

Let the sum of sets (supp Uf) + (suppVT) be understood to be the set of 
points which may be written as the sum of a point t in supp Ut, t G supp Ut, 
and a point r in suppVT, r g suppVT. The following statement holds about 
the support of a convolution product.

Theorem 3.3 Let the convolution product Ut*V T g ^ + t of Ut g 0't and 
VT G Øf be defined. Then (supp((7z * VT)) Sr (supp Uf) + (supp VT).

The following theorem is a corollary of theorem 3.1.
2*
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Theorem 3.4 The commutative rule holds for the convolution product 
Ut*V r 6 @'t + r of Ut g and Vr g &t, i.e. Ut*V T = VT*U (.

It is of importance to establish sufficient conditions under which the 
convolution product of two distributions may be defined as above. Only 
the following two cases will be needed.

Theorem 3.5 Let t g 7?1 and r g I?1, (z) If at least one of he two distribu­
tions Ut G Q>’t and VT G has compact support then the convolution product 
Ut * VT g ^t + r may be defined, (ii) If both distributions Ut G <2>’t and VT G 
have their supports bounded and closed to the left then the convolution product 
Ut*V T g S>'t + r may be defined.

In both cases the intersection I = (supp Uf) A (suppVT) A (suppç>(/ + r)) is 
compact and hence the convolution product well defined by (Ut* VT, (p(t,r)y = 
= <JJt ® VT, oc(t,T)<p(t + r)>.

Such distributions as were encountered in the case (zz‘) above, i.e. which 
have their supports on Rl bounded and closed to the left, are termed right­
sided distributions. The set of all right-sided distributions in Q)' is denoted 
by O)'R.

Definition 3.3 O)'R cz Q)' is the topological vector space of all right-sided 
distributions. The topology on &R is the inductive limit topology of compact 
convergence inherited from the space 3)'.

The space <&'R possesses the following important property.

Theorem 3.G The space &R is a commutative algebra with convolution as 
rule of composition and with the delta distribution as unit element.

Notice that the space is a particular instance of a space S>R. Thus, 
from theorem 3.3 and theorem 3.6 it follows that the convolution product 
of two distributions in Q>'+ is again a distribution in Q>+ .

The transformations T which may be written as convolutions are of 
particular interest. Suppose that only distributions in 3>'R are considered as 
excitations, f E &'R, and suppose there exists in Qt'R a distribution If B G &R, 
such that the response r produced by the excitation f may be written as the 
convolution

r = T(f) = B*f,  f g 0R, H E &R. (3.4)

The domain of T is &R, D(T) = 3>'R, and as the excitation f traverses 
I)(T} = @>'R the response r also traverses S>'R, i.e. the range of T is likewise 
S>'R, 0B.
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It is readily established that if a transformation T is defined by the con­
volution (3.4) then it possesses the four properties 3. (z)-3. (zp) of single 
valuedness, linearity, stalionarynes, and continuity. The validity of the 
converse assertion has been demonstrated by Schwartz. For the spe­
cial case of the excitation being right-sided, f G 2'R, the proposition 
states that if a transformation T has the whole subspace 3>'R as its domain, 
D(T) = Q)'r, and possesses the four properties 3. (z')—3. (zp), then it is a con­
volution transformation over <2>'R, i.e. then there exists a unique distribution 
B G 3)r such that (3.4) is fulfilled. It was seen above that also the range 
of T will be Siï'R, B(T) = O>'R.

The two propositions for right-sided distributions may be staled as a 
necessary and sufficient condition for the transformation T to be a con­
volution transformation over Q)'R as follows.

Theorem 3.7 A unique, right-sided distribution B, B g &r, exists such 
that transformation T may be defined as the convolution r = Tff} = B*f  
for f g if and only if T has S>'R as its domain, D(T) = O>'R, and the trans­
formation possesses the four properties of single valuedness, linearity, stationary­
ness, and continuity.

The transformation T will be proposed to possess the two further prop­
erties of passivity and causality. In this connection the following operations 
on distributions will be required.

Definition 3.4 Let U G Q)' and <p e Sh Then

(z) Ü G Q)' is defined by (Ü,<p>y = (U,ÿy, where the bar denotes complex 
conjugation,

(ii) U G QT is defined by where cp(t) = q>(-T),
and (zzz) Û G 2' is defined by fÛ,(py = fU,g>y, where <p(t) == cp(-t).

Also the next theorem, which essentially informs that the transpose of 
convolution in Q) with the distribution V is a convolution in QT with the 
distribution V, is called for.

Theorem 3.8 Let U g &r, V e Q>'r, and g> E Q>. Then the convolution 
product U*V  is defined, U*V  E S>'R, and <47*  V, = <47, T*<p>.

Suppose that both the excitation /’ and the response r are elements in 
3>, f,rE &(&), where Q is an open set in Rl. Then the transformation

T: f -> r, f,r E (3-5) 
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is said to be passive if

£q[/’(0/‘(0 - 7-(0<0]^ = ,fß[|/'(OI2 - |r(OI2]d/ è 0. (3.6)

Using distribution notation together with definition 3.4 equation (3.6) be­
comes

</■,/>-<r,r> a 0, f,reS(Û). (3.7)

Hence, in the case of f, r e ^(72) the transformation T is said to be passive 
if equation (3.7) holds. If only right-sided distributions are admitted as ex­
citations, D(7’) = &'R, and if the transformation T is supposed to have the 
properties 3. (z)-3. (iv) of single valuedness, linearity, stationaryness, and con­
tinuity, then according to theorem 3.7 a unique right-sided distribution B 
exists, B E S>'R, such that the transformation may be written as

r = T(f) = B*f,  f,r,B e &R. (3.8)

As f E Q> and r e Q) implies that f E S>’R and r e Q)'r, respectively, 
equation (3.7) with f, r e may be restated as

</',/>-<r,r> = <<5*/7>-<B*/-,B*/>

= <<5 - B*B,/*/>

è 0, f,r E 2.

(3.9)

Here /’ e Q), and it follows that /' e Q) and that f * f E Q). Distributions with 
the property of (3.9) carry a special name.

Definition 3.5 Let Q be an open subset of R1, let U e and let
cp E If (U,(p*(p)  è 0 then the distribution U is called positive semi-
definite.

For transformations T which have D(T) = &R and which may be de­
fined as convolutions by equation (3.8) and which therefore according to 
theorem 3.7 possess the properties 3.(z)-3.(zh) the property of passivity is 
stated as follows.

3.(zi) Passivity. The transformation T, which by equation (3.8) is char­
acterised by the distribution B E &R, possesses the property that

<<5 — B * B, ç? * 0, cp e Q), (3.10)

z. e. the distribution <5- B*B  is positive semi-definite.
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3.(z;z) Causality. Let 12 be an open set in Ä1, and let to G 7?1. The property 
of causality is expressed by stating that if fi and f2 are two excitations in 
£^'(/2), /1, /-2 g ^'(ß), such that their difference /i — f2 vanishes for t < to 
then this shall imply that 7’(/i -f2) likewise vanishes for t < to, i.e.

supp(/i - f2) = {t G 7?11 /0 â /} 

implies that

supp T(/ï - f2) {t G Rl\ t0 t}.
(3.11)

For the particular cases when T may be described as a convolution the 
following theorem is of importance.

Theorem 3.9 Let T be a convolution transformation with D(T) = &R, 
such that r = T(f) = B * f, where f,r,B e &'R. The transformation T is 
causal if and only if suppB ^{teRl\Oè t}.

It may be shown that if the transformation T possesses the first five 
properties 3.(z)-3.(z?) of single valuedness, linearity, stationaryness, continu­
ity, and passivity, then it also possesses the sixth property 3.(z?z) of causality. 
In view of theorem 3.7 this assertion may be stated as the following suf­
ficient condition for causality.

Theorem 3.10 Let T be a convolution transformation with D(T) = @>'R, 
such that r = T(f) = B*f,  where f,r,B G O>'R, and let T be passive, then it 
is also causal.

4. Laplace Transformation of the Transformation Equation

By reference to theorem 3.7 a transformation T for which D(T) = @R 
and which possesses the four properties 3. (z)-3. (zh) may be completely 
described as a convolution transformation by

r - T(J) - B*f,  (4.1)

This means that if only excitations f which are elements in the space 
O>'R considered as a convolution algebra (cfr. theorem 3.6) are admitted, 
f G @'R, then T is completely characterised by the element B G 3)'r, i.e. by 
giving the ^-representation of the transformation T. If the distributions f, r, 
and B of (4.1) all possess Laplace transforms then the transformation T 
and the corresponding physical system are completely characterised by the 
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Laplace transform of B, LFB = S(p), i.e. by giving the p-representation of 
the transformation T. The function S:CX 2 P(*S)  -> B(Sj C1 is a com­
plex valued function of a complex variable, p E C1. It is called the system 
function8). The distribution B in (4.1) is called the /-representation of the 
system function.

8) See ref.s (10) and (11).

Definition 4.1 Let F be a subset of Rx, and let x g I?1 and a g I?1. The 
topological vector space L/j.(F} is the space of all distributions Ux E Q>'x such 
that e~oxUx E for a e T. A sequence {Uv}, v = 1,2,3, .. . is defined to 
converge to the limit U in the topology on (F) if and only if for every 
o e F the sequence {e~axUv}, v = 1,2,3,.. . converges to the limit e~oxU in 
the weak dual topology a on Lf'x.

It may be shown that F is convex and hence in the present case of 
F E Rl, if F is not empty, F is an interval on the real axis, finite, semi­
infinite, or infinite.

A sufficient condition for the Laplace transform of a distribution Io 
exist is that the distribution is an element of the space

Definition 4.2 Let F be a convex subset of Rl, let x,o,a> e R], let Bx e S>'x, 
and let oc E fé70? a:l?1 -> Rl, be the characteristic function of supp/L- If 
Bx E yx(F") then the Laplace transform of B, FFB, is defined as

&B = (Bx,7.(x)enxeiMxy = {Bx,a(x)e~px) = S(p),

where p E T + iRr <= j?1 + iRl = C1.

file following theorem establishes a very important connection between 
the properties of a distribution B and the properties of its Laplace transform. 
In the theorem the same notation is used as in the definition 4.2 above.

Theorem 4.1 Let F bean open, convex subset of RL IfS: C1 o F + zl?1 -> C1 
is a function which is holomorphic in the open strip F + iR], and if |*S(p)|,  where 
p = a + iw e F + iRl <= + /Z?1 = C1, on each compact subset K of T, K <= F,
is majorised by a polynomial in |co| depending on K, |S(p)| â ^k(M), then 
a unique distribution B in SC'(F) exists, B E y\F), such that LFB = S(p). 
Conversely, if B is a distribution in B E <^'(F), then a unique function
exists, S:Cl o r + zT?1 -> C1, which is holomorphic in the open strip F + zl?1, 
which on each compact subset K of F, K <= F, is majorised by a polynomial 
in |co|, |S(p)| â (|oj|J), and which is the Laplace transform of B, S(p) = LFB.
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If a complex valued function is known to be the Laplace transform of a 
distribution then information about the support of the distribution may be 
obtained from the following theorem.

Theorem 4.2. Let .ro G R1, and let r be the open, convex half line r = 
{a e Rl I o?o < o} R1. If S: C1 z> r + iRx -> C1 is a function which is 
holomorphic in the open half plane r + iRl, and if |5(p)|, where p = a + ico e 
r+ iRl c + iRi = C1, on each compact subset K of I\ K cz P, is ma- 
jorised by the product of a function e~x<><7 and a polynomial in \co\1 depending 
on K, |S(p)| â e~Xo(y&}{(]&>[), then a unique, right-sided distribution B in 
St” (J") 0 S>'R exists, B e ^'(B) fl 3>'R, such that its support is bounded to the 
left by xo, suppB^ £{<re cr} = P, and such that L£B = S(p). Con-
versely, if B is a right-sided distribution in Sf'fT) fl LPr, B e ^'(F) f| TPr, 
such that its support is bounded to the left by xo, supp/L £{ae â o-}
= r, then a unique function exists, S’.C1 r+ iR} -> Cl, which is holomorph­
ic in the open half plane T + iR1, which on each compact subset K of T, K 
cz r, is bounded by the product of a function e~x°° and a polynomial in |co| 
depending on K, |S(p)| â and which is the Laplace transform
of B, S(p) = &B.

For transformations T which may be written as convolution transforma­
tions according to theorem 3.7 the following theorem is important.

Theorem 4.3 Let P be an open, convex subset of R1, and let f,r,B e ^'(F). 
The Laplace transforms IPf = (p), TLB = S(p), and LLr = TL(p'), where
p e T + iR1 <z R1 + iRi = C1, are holomorphic functions in the open strip 
r + iR1. If r = B*f  then also (p~).

The particular instances of Laplace transforms given in the next two 
theorems will be required.

Theorem 4.4 The Laplace transform of the ô-functional is one, LPb = 1.

Theorem 4.5 Let fpe C1. The Laplace transform of the Riesz distribution

Certain symmetry properties in the distribution B are reflected in the 
properties of its Laplace transform TLB.

Theorem 4.6 Let r be an open, convex subset of Rl, let B e Lf'ÇP'), and 
let TLB = S(p), where p E T + iR1 <= RL + iR1 = Cl.

Mat.Fys.Medd.Dan.Vid.Selsk. 38, no. 2. 3
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Then (i) LP B = S(p),
(Ü) = S(-p)

and (izi) LPB = S( - p)

The distribution B which characterises a convolution transformation 7’ 
in (4.1) will be supposed to be real. Compare with the definition 3.4 of the 
complex conjugate of a distribution.

Definition 4.3 Let Q be an open subset of R1, and let B be a distribution 
in LP(Q), B E &'(&). B is defined to be a real distribution if and only if B = B 
on Q.

The Laplace transforms of distributions which are real possess the fol­
lowing property.

Theorem 4.7 Let r be an open, convex, subset of Rl, let B e 5^'(F), and 
let STB = S(j>), inhere p E F + iR1 R} + iR1 = C1. The distribution B is 
real, B = B, if and only if S(pf = S(p).

The following result is a consequence of the theorems 4.4, 4.5, and 4.6.

Theorem 4.8 Let B be as in theorems Ï.5 and LG. Then LP(ô — B * B) = 
1 -S(p)S(-jp). If furthermore B is real, B = B, then TP(5 - B * B) = 
1 - S(p)S(-pY

Finally, in order to slate the theorem of Bochner and Schwartz9) which 
will be needed subsequently the concept of a positive, tempered measure 
must be introduced.

Definition 4.4 Let Q be an open subset of R\ and let (p be a test function 
in the space P (LT), such that cp(xf E Rx and (p(x) 0 for all x E Q. Let p
be a measure in the dual space, p E The measure p is defined to be
positive if and only if {p,<p} â 0 for all such <p.

Definition 4.5 Let r,A e R1, let Q be an open subset of R1, and let the 
measure p E ^'(P) be positive. The positive measure p is defined to be a positive, 
tempered measure if and only if an integer I exists, 1^0, such that =
O(AZ) as A -> oo.

As indicated in 3.(t>), if the transformation T is a convolution, so that 
r = T(f) = B * f, then T is defined to be passive if the distribution ô - B * B

9) The theorem, initially stated by Bochner, ref. (1), has been generalised by Schwartz, 
ref.s (5) and (14).
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is positive semi-definite. In this connection the following theorem due to 
Bochner and Schwartz is of importance as it presents a criterion to 
establish if a distribution is positive semi-definite.

Theorem 4.9 Let F be an open, convex subset of R1, F <= R}, let B e &”(F), 
and let LFB = S(p), inhere p = a + ico G T + iR'' c Æ’ + iR1 = C1. The dis­
tribution B is positive semi-definite if and only if the restriction of the Laplace 
transform to the imaginary axis iR}, dFBIa = 0 = S(ico), is a positive, tempered 
measure.

5. The General Debye Function as System Function

When measurement of dielectric relaxation of physical systems is car­
ried out the p-representation of the transformation T, which maps the ex­
citation E, the electric field in the dielectric, into the response Z), the dis­
placement field in the dielectric, is determined as the system function 

(5.1)

where p is the complex frequency, p = o- + ico, £(p) is the complex dielec­
tric constant, and where es and £œ are the limit values es = lim e(o + zco) 

co-> o + 
and = lim £(cr + ico), both of which are real.

CO-> a>

The assumption that the response of the dielectric, the displacement 
field I), displays exponential decay to a delta functional excitation in the 
electric field E is equivalent to the assumption that the system function S 
is of the form

e( p) - ex 1
S(p) = “ = ------ , p g Cb to e R . (5.2)

es - ex 1 + pro

Here to is a positive number, To > 0, the relaxation time.
The function

S(p) = —1 (5.3)
1 + pro

is called the Debye function. It is holomorphic in the open half plane r + iR1, 
where r = {er g I?11 — 1 /to < and it maps the half line LGg in the p-plane 

3*



28 Nr. 2

= (do + ico G Ä1 + il?110 co},
- 1

<7o >---- ,
TO

into the semi circle in the S(p)-planc

S(p) e C |S(p) -
1

2(1 + d0T0)
1

2(1 + (To To)

ImS(p) â 0
- 1

do > — ,
TO

(5.4)

(5.5)

the Cole-Cole semi circle. A special instance is the case of do = 0, when

<v. x e(zw)-£00 1>S(lCO) = -------------- = ------- ;------ ,
Es - 1 + iCOTo

(5.6)

and the half line Lq is mapped into the semi circle Ao,

Ao = <S(p) G C1||S(ico)-f| = |, ImS(p) 0}. (5.7)

In many cases, however, e.g. of dielectric systems, there has been re­
ported experimental evidence that the half line Lo in the p-plane is not 
mapped into a semi circle Ao in the S(p)-plane, but rather into various forms 
of continuous arcs, circular arcs, skew symmetric arcs, etc. All of this ev­
idence indicates that the primary assumption of the response of the dielectric 
system displaying an exponential decay characterised by the sole parameter 
To, the relaxation time, to a delta functional excitation, cannot hold in 
general.

This has led to attempts to alter the system function S to a form justified 
by its compatibility with experimental observations, i.e. a phenomenological 
form.

The

and

where 0 oc, ß 1, both have been used to characterise dielectric systems. 
A few years ago the still more general function

10) See ref. (3).
n) See ref. (4).

functions
1

5(p) = (5.8)

1
S(p) = (5.9)i«’ P E C1» ß’r° E (Davidson-Cole),11)

11 + pT0]P
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+ (W1
1

, p g C1, oc,ß,ro G 7?1 (Havriliak-Negami),12) (5.10)

where again 0 a, ß 1, was proposed as system function to characterise 
certain polymer dielectric systems, the proposal being justifiable by the 
ensuing agreement with the experimental observations.

The function (5.10) is called the general Debye function. It is a complex 
valued function of a complex variable, S:CX £)(S) -> 7?(S) C1. In con-

1
trast to the Debve function (5.3), S(p) =--------- , which as its sole singu-

1 + pro
larity has a first order pole at p = - 1/to, the general Debye function (5.10), 

1
S(p) = r possesses singularities which may be essential.11 _L ( a IP

5.(1) <x,ß,To G R1, a = 1, 0 g ß g 1, ro > 0.

In this case the function (5.10) becomes

- i- (511)

which is a holomorphic function in the entire p-plane, and |S(p)| is bounded by

T |S(P)I = I- (5.12)

The domain of holomorphy includes the open half plane F+iR1, where 
F = {<r g 2?110 < a}, and it follows from theorem 4.2 that a unique right­

sided distribution Bt exists, Bt e ^'(F) n such that JFB = and 

which has its support bounded to the left at t = 0, suppZh c {t G R110 t}. 
An application of theorem 4.7 shows that Bt is real. It is seen immediately 

that B = —ød.
2P

5.(17) a, ß, to G Rl, 0 < a < 1, 0 â ß â 1, To>O.

In this case the function (5.10) is many valued and has discrete branch 

points pic, which may be dense on the circle |p| = —, and which are situated at 
TO

12) See ref.s (8) and (9).
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1 1 + 2 k
p/c = — exp i a

To 1 — a
k = O, ± 1, ± 2, ± 3,. . . (5.13)

In addition, a branch point is situated at p = 0.
Each of the branch points pk is of infinitely high order if and only if 

ß is irrational. The branch points pk are dense on the circle |p| = —, and 
To 

the branch point p = 0 is of infinitely high order if and only if a is irrational. 
However, the branch points p*  are situated on different sheets of the Rie­
mann surface. In fig. 5.1 the sheet of the Riemann surface corresponding 
to the principal branch of the function (5.10), i. e. corresponding to the 
branch which contains the set {5 (p) G C11 Arg S (p) = 0}, is indicated. 
The sheet contains the open half plane {p g C* 110 < |p| zx |Argp| < tt/2}, 
which may be continued to the sector {peC^O < |p| zx |Argp| < %/(l - a)} 
and even further, compare fig. 5.1. The mapping 

1
|1

(principal branch) (5.14)
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from this sheet of the Riemann surface to the principal branch of (5.10) 
is holomorphic.

Let a branch cut in the p-plane be introduced along the negative, real 
axis from p = 0 to the point at infinity. Then the mapping (5.14) is holo­
morphic in the entire p-plane except on the negative, real axis, the set 
{a e Äl|<T ê ()}. As this domain of holomorphy includes the open half 
plane F + ilV, where F = {tr e < er} and as

|S(p)l è 1, (5.15)

it follows again from the theorem 4.2 that a unique, right-sided distribution 
lit exists, Ht G A 2#’R, such that BfB = S(p), where S(p) is under­
stood to be the principal branch of the function (5.14), and which distribu­
tion has its support bounded to the left at t = 0, suppß? yz {t e IV |0 t}.
As S(p) = S (p), it follows from theorem 4.7 that Bt is real.

Analogous considerations may be applied to the function Son, where n 
is the mapping

7i : p -p, p g C1. (5.16)

If a branch cut in the p-plane is introduced along the positive, real axis 
from p = 0 to the point at infinity then the function Son is holomorphic 
in the entire p-plane except on the positive, real axis, the set {tr e /?l|0 cr}. 
Consequently the function 1 - S(p)S(-p) is holomorphic in the two open 
half planes iV + iF and 7?1 — iB, where F = {er g äl|() < er}. In particular, 
the function 1 — S(p)S( —p) is holomorphic on the imaginary axis with the 
point p = 0 excluded, z7?1\{0}. At the point p = 0 the function
1 -S(p)S(-p) is continuous.

The restriction of the function l-S(p)S(-p) to the imaginary axis 
ilV is

1 - S(ico)S(-ico) = 1 - |S(zœ)|2 g 7? (5-17)

for which

0^1 — |S(zco)|2 â 1, 0 a,ß 1, 0 < To- (5.18)

From theorem 4.9 (Bociiner-Schwartz) it follows that the distribution

ô — B*B,  where BBB - 
semi-definite.

1
|1 +(fra)>-»K

(principal branch), is positive

The situation is summarised in the following theorem.
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Theorem 5.1 Let T be a convolution transformation with D(T) = &R, 
such that r = T(f) = B*f,  where f,r,B G @fR. Let a,ß,To G R1, with 
0 â x,ß g 1, and 0 < To, and let LFB = S(p), where S(p) is the principal 

branch of the function S(p) = ----------------——--
I1 + (P^o)1

Then the transformation T-.f r possesses the six properties of (z) single 
valuedness, (zz) linearity, (iii) stationaryness, (iv) continuity, (v)passivity, and 
(vi) causality.

6. The t-Representation of the General Debye Function

According to the results in sections 5.(z) and 5.(zz) the function

■W =
1

11 T(proÿ-«p (principal branch), (6.1)

where p e C1, and <x,ß,r0 g R1 with 0 â a,ß g 1,0 < r0, is holomorphic in 
the open half plane T + iR] where F = {tr g I?110 < tr}. In the rest of sec­
tion 6 when referring to the function (6.1) only the principal branch is 
considered.

1
< <t>, the function (6.1) may be expanded

TO

1
If —- < |/>| and hence also if p is in the open half plane I\ + zJ?1, p g 1\ +

1
/

in an infinite binomial series. For a, ß, t0 e R}, with 0 x,ß â 1, and 
0 < to, the expansion is

5(p) [i+(p*o) 1-°T

00

V 7X1 - ß) 1
Z
n = 0

nlT(l - ß-n) (jOTo)(1_a) (^+w)

y1(-l)n T(ß + n) 1
z

n = 0 nl F(ß) (jDT0)(1~a) +

where F denotes the /’-function and where the identity

F(ß)F(l -ß) = (- \)"F(ß + n)F\\ -(ß + n)], n = 0, ±1,±2,... (6.3)
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is the

TO

n!
(6.4)

1
0>To)(1_a) (ß + n)'

(6.5)

1
According to theorem 4.2

z g C1

a (H
< 1 A

distribution (B<)n

termvise application of the result (6.4) to the series (6.2) yields the infinite 
series of Riesz distributions

(principal branch) determines
sided and is an element of <5^(P) where r = {cr e < <?}, Bt G ^^6

1
— <
TO

has been used. If p is in the intersection of < |p| and the open half plane 
To

^(Bt)n = •To

0 < <r}, of the function which for p G <z G C1 
represented by the infinite series (6.2). I

From theorem 4.5 it follows that the n’th term of the
1

00

Bt = (Bt)n
n = 0

00

= 2
n = 0

1 .
To n!

IXß + n) 
r(ß}

the function (6.1) S(p) = —

a unique distribution Bt, which is right-

Laplace transform of the Riesz 
(//ro)“"«"’4'”’-1 .

1 )f——r---- ----------------—, i. e.
P[(l - a)(ß + n)]

1 (-0M

P + iR1, i.e. forpecz g C1 — < |z| z G P + z'7?1 where P = {n g R1 10
I To I

the series (6.2) is (C, 1) summable on the set {(a,ß) G lî2|0 a â 1 
ß 1} and uniformly convergent on the subset {(a,ß) G R2\Q â a 
0 ß < i}. t

The function (6.1) N(p) = F-------------z-—(principal branch)
[1 + (pro)1 a]P

analytic continuation to the open half plane P + iR1, where P = {cr œ 7?1 |
— < |z| /x Z G r + ZjR’l- is 

To

(-l)w
71!
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^(Z1), which has its support bounded to the left at 1 = 0, suppBf S 
{t e Z?110 â t}, and which is such that £?Bt = S(p), where S(p) is the 
function (6.1). The series (6.5) does not converge in the topology on ^(B),

1 ,
(/>) [1 + (w1““]'’ " 7'

but in the coarser topology on y^(Z\), where Z\
1
- < o'!, the 

To
series (6.5) is (C, 1) summable on the set {(a, ß) e R2|0 
and convergent on the subset {(a,ß) e R2\0 a < 1 aO £ ß < 1}.

It is of interest to indicate the series for Bt and for S(p) in the four 
special cases of (x,ß) = (1,1). (1,0), (0,1), and (0,0). In all four cases 

— < |z| z E B + zT?1 {, where r = {o' e Z?11 0 < o'}, and 0 < To • 
to

6.(z) a = 1, /? = 1.

ZV + n)

r<M
(t/T0)$1_a)
F[(l -«)(/? + n)] a = 1

P = 1

00

2 (-0”^
n = 0

6.(zz) a 1, ß = 0.

(- l)w 
n!

r(/? + n) (t/T0)(1~a) ^ + «>-1 

r[(l - oc)(ß + n)] a = 1
P=1

1

= ôt.

S(p) = n+<pTOy aj^=; i.

(6-6)

(6-7)

(6.8)

(6.9)
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6.(zzï) a = O, ß = 1.

HO -«)(£ + '•)] a = 0
/3 = 1

r(£)

(6-10)

S(P) =
1 i

1 + pro (6-11)

6.(zï>) a = 0, ß = 0.

J\ß±n) (f/To)£1_a)(/3 + n)_1
a = 0 
ß = o

= Öt.

S(P) =
1

= i.

(6.12)

(6.13)

The whole situation may be summarised in the following theorem.

Theorem 6.1 Let p e C1, and a,ß,To e 7?1 with 0 è a,ß è 1, and 0 < tq.
Let r = {a E J?110 < cr} and I\ = jcr e R1 1

TO

! Let Bt E ^'(R) A &R

be the unique distribution such that &Bt = S(p), where S(p) is the principal

branch of the function S(p) = ----- -----
(l+Cpro)1 aP

Then, (z‘) the distribution Bt has its support bounded to the left at t = 0, 
suppBt c {t E Rx\0 g t},

and (zz) the distribution Bt is determined by the infinite series of Riesz 
distributions

V 1 .til” _r(ß + pr(tlTo)+ a^ß+n} 1 

re = oTo ?,! r(X> rt(! - «X/5 + n)l
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In the topology on the series is (C, 1) summable on the
set {(a,/?) e l?2|0 a 1 ü ß 1} and convergent on the 
subset {(ot,ß) E R210 a < 1 zx 0 ß < 1}.
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